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Despite a long and rich history of scientific investigation, fluid turbulence remains
one of the most challenging problems in science and engineering. One of the key
outstanding questions concerns the role of coherent structures that describe frequently
observed patterns embedded in turbulence. It has been suggested, but not proved,
that coherent structures correspond to unstable, recurrent solutions of the governing
equation of fluid dynamics. Here, we present experimental and numerical evidence
that three-dimensional turbulent flow tracks, episodically but repeatedly, the spatial and
temporal structure of multiple such solutions. Our results provide compelling evidence
that coherent structures, grounded in the governing equations, can be harnessed to
predict how turbulent flows evolve.

turbulence | prediction | coherent structures | nonlinear dynamics

Both engineered and naturally occurring fluid flows are often turbulent and exhibit rich
and complicated dynamics. Yet, despite centuries of systematic studies going back to
Leonardo da Vinci, numerous open questions remain. Statistical theories (1, 2) brought
some success in predicting the universal scaling of energy and momentum transport in
high-Reynolds number turbulence, and recent numerical work has observed a scaling to
exist even at lower Reynolds numbers (3). Yet quantitative predictions, even for simple
properties such as the pressure drop for turbulent pipe flow, remain elusive and require the
use of empirical relations (4). Statistical approaches tend to assume isotropic and/or highly
symmetric flows, which neglect the important spatial and temporal structure of turbulence
(5). In particular, one of the key unexplained mysteries is the role of recurring, recognizable
patterns, known as coherent structures (6, 7). Coherent structures can provide a better
understanding of turbulence (8), even describing physical mechanisms (9) not captured
by statistical distributions. While previous studies have primarily focused on the spatial
aspects of coherent structures, coherent structures can be used as building blocks of the
temporal behavior of turbulence as well. The attempts to build deterministic models
describing the evolution of coherent structures based on various modal decompositions
go back many decades (10).

A description of turbulence that incorporates coherent structures requires them to
be connected to the governing equations. Development of advanced numerical methods
such as Newton–Krylov solvers (11) has enabled the computation of unstable, recurrent
solutions of the Navier–Stokes equation. Some of these solutions were found to have
spatiotemporal properties similar to the observed coherent structures, which led to the
conjecture that coherent structures appear when turbulent flow transiently approaches
these solutions. Consequently, such unstable solutions became known as exact coherent
structures (ECSs). ECSs provide a direct link between the governing equations and the
short-lived patterns frequently observed in turbulent flows. They also make concrete the
qualitative picture of turbulence proposed in the 1940s by Eberhard Hopf (12). Inspired
by the work of Poincaré on celestial mechanics and chaos (13), Hopf ’s picture represents
turbulence as coevolving with (shadowing) a repertoire of unstable solutions. Shadowing
implies that turbulent flow has spatial and temporal structure mimicking that of (possibly
more than one) unstable recurrent solutions to the governing equations.

Most of the prior work exploring the role of exact coherent structures in turbulence
focused on traveling waves (TWs) in transitional flows (14), although TWs have been
found in flows as high as Re =O(106) (15). TWs are equilibria in a comoving reference
frame and represent the simplest type of dynamics in systems with continuous spatial
symmetries. There is experimental evidence of the role of TWs in the transition from
laminar flow to turbulence (16–18); TWs were even found to be visited by turbulent flow
in numerical simulations of channel flow (19) and pipe flow (20, 21). However, TWs are
too simple to describe the rich temporal dynamics of fluid turbulence. Instead, ECSs that
exhibit nontrivial temporal behavior (22, 23) are better suited for this purpose. In par-
ticular, relative periodic orbits (RPOs), which are periodic orbits in a comoving reference
frame, are thought to play a key role (24). Although previous studies found the flow to
instantaneously resemble RPOs in numerical simulation of transitional turbulence (24),
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it was only recently shown that ECSs describe the temporal evo-
lution as well (25). To date, these findings have not been validated
experimentally. We show that unstable, recurrent solutions (i.e.,
ECSs) play a substantial and persistent role in characterizing the
time evolution of experimentally observable turbulence in three
spatial dimensions.

To convincingly verify Hopf ’s picture of turbulence, it is nec-
essary to compute a collection of ECSs under conditions that
fully match those encountered experimentally. This is most con-
veniently done for a closed flow, where the boundary conditions
in the flow direction are naturally periodic. For this reason, the
present study focuses on Taylor–Couette flow (TCF) between two
concentric, independently rotating cylinders, as shown in Fig. 1.
TCF is characterized by four nondimensional parameters. Two
are geometrical, Γ = h/d and η = ri/ro , where h is the height
of the fluid annulus and ri and ro are the radii of the inner and
outer cylinders, respectively. The other two parameters are the
Reynolds numbers, Rei =Ωirid/ν and Reo =Ωorod/ν, where
d = ro − ri is the gap between the cylinders, ν is the kinematic
viscosity of the fluid, and Ωi and Ωo are the angular velocities of
the two cylinders.

TCF is a canonical flow that has been used to study a wide
variety of flow behaviors, including pattern formation (26, 27),
transition to turbulence (28–32), and turbulence itself (33–35).
The bulk of the previous work was performed in systems with large
Γ. In the work presented here, we restrict Γ to be small to allow for
direct comparisons between numerics and experiment across the
full flow domain. Specifically, we focus on flows driven by counter-
rotating cylinders (Rei = 500, Reo = −200) in a wide-gap
(η = 0.71), small-aspect-ratio (Γ = 1) geometry. In the small-
aspect-ratio regime (Γ ≈ 1) of TCF, there have been several
studies with stationary outer cylinder and rotating inner cylinder
(36–44); however, only one study examines the co- and counter-
rotating scenarios (45), and none investigate turbulence.

As Γ decreases, the end cap effects play a more substantial role
than they do at large Γ. In particular, the top and bottom end
caps result in a redistribution of angular momentum, which causes
the transition away from the laminar base flow to occur at larger
values ofRei (46). However, the decrease in Γ does not undermine
the three-dimensional nature of the spatiotemporally chaotic flow
observed at Reynolds numbers considered in this study, which still
exhibits structure over a range of scales in each spatial dimension.

An experimental realization of TCF was constructed with
transparent walls, giving optical access to the entire domain of

Fig. 1. Turbulence is visualized in a laboratory flow between concentric,
independently rotating cylinders with radii ri , ro and corresponding angular
velocities Ωi ,Ωo. Fluid is confined between the cylinders and bounded axially
by end caps corotating with the outer cylinder. The red–white–blue colors
indicate the fluid’s deviation from the mean azimuthal velocity component
at a fixed axial location equidistant (h/2) from the axial end caps.

the flow. For visualization, the flow was seeded with neutrally
buoyant, fluorescent tracer particles and the plane at z = h/2
was illuminated. Despite having nontrivial structure in the axial
direction, we find that shadowing can be characterized sufficiently
well by considering the motion in a radial-azimuthal plane at a
fixed height along the axis (see Materials and Methods, Experi-
mental Setup for details). The flow was imaged with a camera
whose line of sight lies along the cylinders’ axes, and in-plane
components of velocity were determined using particle image
velocimetry. Direct numerical simulations (DNSs) in the entire
flow domain were performed using a pseudospectral solver (47)
with boundary conditions exactly matching experiment (48). This
correspondence enables a quantitative comparison of numerically
computed ECS with experiment.

Rotational symmetry of the Taylor–Couette flow implies that,
just like for a pipe or channel flow, most ECSs are expected to take
the form of either RPOs or TWs (24). Both types of ECSs satisfy
the condition

u(r , θ − Φ, z , t + T ) = u(r , θ, z , t). [1]

For RPOs, T is the period of the solution and Φ is the angle
by which the solution drifts in the azimuthal direction over one
period. The constant angular speed of the comoving frame is then
Ω = Φ/T . For TWs, Eq. 1 is satisfied for any Φ and T whose
ratio Ω is the drift speed of the solution.

We focused on computing RPOs by analyzing a long, uncon-
strained turbulent flow obtained through DNS. Nearly recurrent
segments of the simulated turbulent trajectory were found by
examining minima of the residual,

Dself(θ
′, t ′, t) = ‖u(r , θ − θ ′, z , t + t ′) − u(r , θ, z , t)‖2, [2]

where ‖u‖22 =
∫
V

u · u dV . Then, a Newton–Krylov solver is used
to converge these segments to solutions of Eq. 1, i.e., exactly
recurring flow fields (49).

In general, the set of flow states corresponding to an RPO is
a two-torus, Si , in the infinite-dimensional space of flow states
(Fig. 2A), known as state space. In the fixed laboratory frame,
trajectories lying on Si are quasiperiodic. Any point on the ith
RPO (light blue two-torus in Fig. 2B) may be written as ui (φ, τ),
for some φ and τ. Both coordinates are cyclic, with φ running
from 0 to 2π and τ ranging from 0 to Ti (the solution’s period).
To visualize the relationship between the computed ECSs and
turbulent flow, we plotted in Fig. 2C each RPO, ui , using a low-
dimensional projection of the state space spanned by the energy
E = ‖u‖22 and the rate of energy dissipation D = ‖∇ × u‖22 . Since
both E and D are invariant with respect to rotation, every RPO is
represented by a closed curve in this particular projection. Indeed,
as we mentioned previously, each RPO becomes a temporally
periodic solution in the corotating reference frame.

A long turbulent trajectory computed using DNS is shown in
Fig. 2C as a histogram, with the grayscale intensity representing
the likelihood of visiting different regions of state space. In this
low-dimensional projection, we find that the computed RPOs
lie in the regions of state space frequently visited by turbulence.
Although this fact is consistent with Hopf ’s picture of turbulence,
it does not by itself demonstrate that turbulent flows evolve
similarly to RPOs. If RPOs play an important dynamical role,
turbulence will not only approach each RPO, but also shadow it;
i.e., the corresponding flows will coevolve in a similar manner for
an interval of time before diverging.

The expected duration of shadowing intervals depends on the
stability properties of individual RPOs. The more unstable an
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A

B

C

Fig. 2. Low-dimensional projections suggest that RPOs, i.e., solutions to the governing equations that recur indefinitely in time, are relevant to turbulence. (A)
To demonstrate that RPOs are truly two-tori when rotational symmetry is not reduced, RPO2 is plotted over 80 periods using the coordinates shown, where uθ

represents the azimuthal component of the flow velocity and 〈·〉 indicates a spatial average. Thus, 〈uθ 〉 is the mean azimuthal speed, and 〈uθ sin(θ)〉 [〈uθ cos(θ)〉]
is the imaginary (real) component of the leading spectral mode. (B) Cartoon depicting how a portion of a turbulent trajectory (solid red curve) shadows, i.e.,
follows, an RPO (light blue surface) for a period of time. Shown in dark blue is the trajectory belonging to the RPO, which is most similar to the turbulent
trajectory. The orange arrow relates a point on the turbulent trajectory to the point closest to it on the torus. (C) Using energy E and energy dissipation rate
D of the flow as projection coordinates, eight RPOs are represented by closed trajectories (shown in color). RPOs appear as closed curves in this projection
because both coordinates are rotationally invariant. The chaotic behavior of turbulence is indicated by the distribution (shown in gray) of visits to particular
regions of the projection (darker regions have higher likelihood of visitation).

RPO is compared to its peers, the less frequently its neighbor-
hood is visited by turbulent flow. Moreover, the more unstable
a solution is, the shorter the shadowing intervals are. Stability
is characterized by the escape rate γi =

∑
k Re(λi,k ), where λi,k

are the unstable Floquet exponents of RPOi . The inverse of the
escape rate then gives the characteristic duration of shadowing
intervals. The typical value in our system γ−1 ∼ 0.031 is much
shorter than the typical period of an RPO (Table 1), so turbulence
is expected to shadow short segments of an RPO before leaving its
neighborhood, as illustrated in Fig. 2B.

We quantify shadowing of RPOi by projecting turbulent flow
u onto the coordinate system associated with the corresponding
torus Si . We define ui (φ(t), τ(t)) to be the point on Si closest to
a snapshot u(t) of turbulent flow at time t, such that

{φ(t), τ(t)} = arg min
τ′,φ′

‖u(t) − ui (φ
′, τ′)‖2. [3]

Table 1. Properties of RPOs found in TCF for Γ = 1,
η = 0.71, Rei = 500, and Reo = −200: the temporal period
T and shift φ

T Φ Nu γ

RPO1 0.196 1.043 9 0.0246
RPO2 0.177 0.856 7 0.0209
RPO3 0.234 0.448 9 0.0260
RPO4 0.200 0.199 8 0.0299
RPO5 0.422 0.443 7 0.0336
RPO6 0.419 0.425 8 0.0358
RPO7 0.164 0.481 8 0.0342
RPO8 0.215 5.799 8 0.0464

The dimension of the unstable manifold of each solution, Nu is also shown, as well as the
escape time, γ−1. Both the period and escape rate have been nondimensionalized using
the timescale d2/ν ≈ 267 s, for cylinder gap width d and viscosity ν. Nu includes the 2
marginally stable directions of each solution, along τ and φ.

For any initial condition on Si (e.g., any flow field described by
the RPO), we will have φ(t) = φ0 and τ(t) = t + τ0 with some
constant φ0 and τ0. For any trajectory passing close to Si , we
expect the same relations to be satisfied approximately. Hence, we
detect shadowing by searching for intervals where deviations from
these two relations are small (specifics can be found in Materials
and Methods, Shadowing Criteria).

Shadowing events identified using these criteria are summa-
rized in Fig. 3 for a numerically computed turbulent trajectory
over an interval equal to about 300 times the mean RPO period;
this interval corresponds to about 270 min in experiment. We
find, in validation of Hopf ’s picture, that turbulence visits the
neighborhoods of all eight RPOs, with each neighborhood visited
multiple times. In fact, we observe that turbulence occasionally
shadows multiple solutions simultaneously. This should happen,
for instance, close to bifurcations in parameter space when two or
more distinct but related solutions are themselves almost indistin-
guishable. Indeed, RPO5 and RPO6 are born from a nearby bi-
furcation. More generally, turbulence can simultaneously shadow
multiple distinct solutions when these solutions also shadow each
other for a small portion of their orbits and turbulence shadows
these portions. We believe this to be the case for the simultaneous
shadowing of solutions other than RPO5 and RPO6. This behav-
ior is often observed in chaotic systems, and here we show it to
exist in fluid turbulence as well.

To illustrate what shadowing looks like in real space, Fig. 4 il-
lustrates experimentally observed shadowing of RPO1 and RPO7

(Movie S1). For each RPO, Fig. 4 compares four equally spaced
snapshots of the flow field in the symmetry midplane z = h/2 that
correspond to the RPO and turbulent flow in the experiment. Tur-
bulent flow in this system is characterized by fluctuations that are
relatively weak compared to the axisymmetric mean flow 〈u〉t,θ .
Hence, to visualize the fluctuation, we subtracted this mean from
all the flow states. Fig. 4 shows the deviation of the azimuthal
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Fig. 3. Turbulence frequently shadows ECSs. In the graphic, black vertical lines indicate shadowing events—time intervals during which ECSs (RPO1 to RPO8)
are being tracked by turbulence obtained from a numerical simulation (Materials and Methods, Shadowing Criteria). The duration of each shadowing event shown
is at least one escape time γ−1

i , computed from the unstable Floquet exponents of the corresponding ECS.

flow velocity from its mean. In each observed shadowing event,
the turbulent flow’s complex spatial and temporal structure is well
characterized by the corresponding RPO.

The results presented here provide the most convincing evi-
dence to date in support of a dynamical description of turbulent
flow grounded in the governing equations, as envisioned by Hopf.
Turbulent flow does indeed move between neighborhoods of a
collection of ECSs, where the evolution of turbulent flow in
each neighborhood is well described by corresponding ECSs.
Therefore, our work demonstrates that ECSs in the form of RPOs
are important in describing the temporal evolution of turbulence.

While a much larger set of ECSs is required for a complete
quantitative description of fluid turbulence, even at the relatively
low Reynolds numbers considered here, the results of this study
are quite significant. They validate several key assumptions of a
deterministic description of turbulence that is grounded firmly
in the governing equations of fluid dynamics and elucidate the

Fig. 4. Experimental evidence that turbulence and RPOs, i.e., solutions to
the governing equations that recur indefinitely in time, coevolve when our
shadowing criteria are met. Turbulence closely follows RPO1 (Top) and, during
a different time interval, tracks RPO7 (Bottom). In both cases, the color map
shows the deviation in the azimuthal component of the velocity uθ from the
mean; moreover, the time interval between successive turbulent snapshots
is ∼3.5 s, which may be compared to the period, 52 (44) s, and escape time,
6.6 (9.1) s, of RPO1 (RPO7). The flow fields for the RPOs were chosen by first
finding the optimal azimuthal orientation φ0 and temporal phase τ0 for the
entire shadowing event; subsequently, the RPO was evolved in time while
holding the azimuthal orientation fixed [i.e., φ(t) = φ0 and τ(t) = τ0 + t].

relation of the dynamics of coherent structures to the evolution
of turbulent flow. Improved understanding of coherent structures
promises to shed additional light on many long-standing prob-
lems, including the role and origin of intermittency and the mech-
anisms of turbulent cascades. Beyond fluid turbulence, a similar
framework should be useful for describing complex dynamics
in other high-dimensional systems where strong nonlinearities
appear, such as plasmas (50), interacting subatomic particles (51),
arrhythmic cardiac tissues (52), neural networks (53), and active
matter (54).

Materials and Methods

A Quantitative Signature of Shadowing. To establish the dynamical rele-
vance of an RPO in turbulence, the flows representing both must have similar
temporal evolution and spatial orientation. To quantify how closely the RPO is
being shadowed, we define two distance metrics

Dφ(t, τ) =min
φ

‖u(t) − ui(φ, τ)‖2 [4]

and
Dτ(t, φ) =min

τ
‖u(t) − ui(φ, τ)‖2, [5]

whose minima determine the evolution of the coordinates τ and φ parameteriz-
ing the RPO. An example of a turbulent flow in DNSs shadowing an RPO is shown
in Fig. 5. In this example, for the range of t where turbulence is shadowing the
RPO, there is a clear minimum in Dφ that falls along the diagonal τ = t − t0 and
a staircase pattern of minima in Dτ , implying the flows are not only similar at one

Fig. 5. A shadowing event for RPO1 in DNS. The distance metrics Dφ (above)
and Dτ (below) are shown over a time interval including the shadowing event,
which corresponds to t/T ∈ (0.8, 1.8).

4 of 7 https://doi.org/10.1073/pnas.2120665119 pnas.org
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Fig. 6. The distance D(t) between a turbulent flow in DNS and RPO7, during
an arbitrary interval, computed using the full, 3 dimensional, 3 components
(3D-3C) flow field (solid blue) and the 2 dimensional, 2 components (2D-2C)
flow field restricted to the midplane z = 0 (dashed red). Both signals were
normalized to allow direct comparison. These normalized signals differ by less
than 1% relative error over the interval t ∈ (0, 60), indicating that the 2D-2C
distance is a good proxy for 3D-3C distances. Here and in main text, time has
been nondimensionalized using the timescale d2/ν, for cylinder gap width d
and viscosity ν.

time instant, but both flows have the expected similar orientation and temporal
evolution for more than one period. The discrete shifts in the minima of Dτ are
associated with the rotation of the reference frame by angleΦi once per period
of the RPO, so that u(t) is expected to be similar to ui(φ ± Φi, τ) for τ < 0 and
τ > Ti.

2 Component, Planar Particle Image Velocimetry Is Sufficient. Unlike
TW detection in previous experimental studies, RPO detection requires a
measurement that provides spatial structure along the streamwise direction.
TWs have spatial and temporal translations that are equivalent, making it
possible to detect them by imaging the flow in a fixed plane transverse
to the flow and using Taylor’s frozen turbulence hypothesis to reconstruct
the spatial variation from the temporal variation. However, RPOs vary
independently in space and time, explicitly breaking the Taylor hypothesis.
In our system, we find measurement of the streamwise (θ) and radial (r)
velocity components in a plane at a fixed height along the axis of rotation
provides sufficient spatial and temporal information to detect reliable
shadowing events involving RPOs. To illustrate this point, the distance
D(t) =minφ Dτ (t, φ) =minτ Dφ(t, τ) between a turbulent flow in DNS and
RPO7 is shown in Fig. 6. In Fig. 6, a clear correlation exists between distances
computed over the entire volume and distances computed with only in-plane
velocities obtained from the midplane.

The ability to identify robustly shadowing events with two-dimensional
datasets should not be taken to imply that the flow is nearly two-dimensional.
Indeed, the small-aspect-ratio Γ implies that end-cap–induced Ekman pumping

Fig. 7. Turbulent behavior in all three velocity components is indicated by
significant energy in a broad range of azimuthal mode numbers, as illustrated
by the time-averaged magnitude of the azimuthal spectral coefficients from
numerical simulations at Rei = 500, Reo = –200.

strongly affects the flow over its entire axial extent. More importantly, as Fig. 7
illustrates, the fluctuations about the mean flow in all three directions have
comparable magnitude over a large range of scales, which is typical for three-
dimensional turbulent flows. Also, as is typical for turbulent flows, we find the
power spectrum to be broadband, without any discernible peaks for any of the
three velocity components.

Library of Solutions. Taylor–Couette flow has inherent symmetry with respect
to continuous rotations about the z axis, Rφ ,

Rφu(r, θ, z) = u(r, θ − φ, z), [6]

and discrete reflections, Kz ,

Kz[ur , uθ , uz](r, θ, z) = [ur , uθ ,−uz](r, θ,−z), [7]

about the z axis. This implies that the solutions relevant to turbulence are relative
solutions, such as RPOs or traveling waves, and preperiodic orbits. A turbulent
trajectory u(t) was computed for 60 nondimensional time units (equivalent to
300Ti), where time is nondimensionalized using the radial momentum diffusion
timescale, d2/ν ≈ 267 s. We find that the chaotic set breaks the z-reflection
symmetry. That is, there are two z-asymmetric chaotic sets, one the reflected copy
of the other, which are observed to be dynamically disconnected. Preperiodic
orbits, which would represent orbits lying in both sets, are therefore unlikely to
be relevant to turbulent motion. Because of this, we focus on relative solutions
exclusively.

Relative solutions were found using an in-house Newton-Generalized
Minimum Residual (GMRES) solver (48) that leverages a hookstep algorithm
(11). Since Newton’s method is not globally convergent, sufficiently good initial
guesses had to be supplied to this solver. To accomplish this, we computed a
turbulent trajectory, u(t), and analyzed the recurrence function,

G(t) =min
τ,φ

Dself(φ, τ, t). [8]

Deep minima of Eq. 8 correspond to moments in which the turbulent trajectory is
almost periodic or stationary in the comoving frame. The flow field during these
deep minima and their corresponding τ and φ values are good initial conditions
for the solver. These initial conditions are fed into the solver and added to our
library of solutions if the relative residual

ε =
‖u(T) − RΦu(0)‖2

‖u(0)‖2
[9]

becomes sufficiently small (ε < 10−11). T and Φ represent the period and
azimuthal shift of converged solutions. Eight distinct solutions were converged
for this parameter regime; their properties are listed in Table 1.

The symmetry-reduced Euclidean distance

Di(u(t)) =min
φ,τ

‖u(t) − Rφui(τ)‖2 [10]

between each of these solutions and the turbulent flow u(t) is shown in Fig. 8.
The distance was normalized by the radius of the chaotic set

Σ = 〈 ‖u(t) − 〈u(t)〉t ‖2〉t , [11]

Fig. 8. The distance between the turbulent DNS trajectory and the eight
RPOs, computed using the 3D-3C Euclidean norm. Here, Di is the distance
to solution ui and Σ is the radius of the chaotic set. The threshold Di/Σ = 0.4
below which two flow states are considered close is designated with a dashed
black line. While the full dataset spans t ∈ [0, 60], only a portion of that interval
is shown here, to better illustrate the behavior of the distances, Di .

PNAS 2022 Vol. 119 No. 34 e2120665119 https://doi.org/10.1073/pnas.2120665119 5 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
A

ug
us

t 2
9,

 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
10

7.
21

5.
62

.1
69

.

https://doi.org/10.1073/pnas.2120665119


where 〈 · 〉t denotes a temporal mean. Low (compared with unity) values of Di/Σ
indicate instances where turbulence approaches RPO ui.

Shadowing Criteria. It has been conjectured that the evolution of turbulent
flow over time can be well approximated by a sequence of ECSs. In an effort to
validate this picture of fluid turbulence, literature over the past decade has aimed
to identify signatures of ECSs in turbulent motion. A large body of work, in both
experiment and simulation, has found that the distance Di defined by Eq. 10
generically experiences broad and deep minima (16–18, 21, 23, 55), known as
“close passes,” during which turbulence approaches and remains close to a known
ECS ui. While these results support the relevance of ECSs to fluid turbulence,
a small value of Di does not automatically imply that the time evolution of
turbulence is similar to that of ECS ui.

In state space, an ECS defines a set Si of all flow states u satisfying
Di(u) = 0. “Shadowing,” which is a stronger condition than “closeness,” requires
that turbulence explore Si in a manner consistent with the evolution of a member
of the corresponding ECS family when Di is sufficiently small (25). Topologically,
Si is a loop (one-torus) for a family of TWs Rφui and is naturally parameterized
using the angle coordinate φ. For a family of RPOs Rφui(τ), Si is a two-torus that
is naturally parameterized using the phase τ and angle φ. The distance Di from
u to Si is a natural transverse coordinate describing the deviation of turbulence
from the corresponding family of ECSs. Coordinates τ, φ, and D then represent
a skew-product decomposition (56, 57) of state space in the neighborhood of an
RPO, induced by the two continuous symmetry groups: temporal translations and
spatial rotations. In this coordinate system, the RPO Rφui(τ) evolves such that
τ = t + τ0, φ = φ0, and Di = 0, where τ0 and φ0 are constant for 0 < τ < Ti
and change discontinuously (by Ti and Φi, respectively) when τ = Ti. Building
on Krygier et al. (25), we define shadowing of an RPO using the following three
criteria being satisfied simultaneously over a period comparable to solutions’
escape time:

• Turbulent flow u(t) remains close to the ECS family Rφui(τ); i.e., Di is small.
• Turbulent flow u(t) follows the same member of the ECS family Rφui(τ); i.e.,
|dφ/dt | 
 Φn/Tn.

• Turbulent flow u(t) evolves at the same rate as the ECS Rφun(τ); i.e.,
|dτ/dt − 1| 
 1.

Following the notation defined in Krygier et al. (25), Fig. 3 was produced with
Eτ < 1 × 10−4, Eφ < 3 × 10−4, and D̃ < 4 × 10−1.

Experimental Setup. The experimental system used in this study was de-
signed and built with the unusual quality of complete optical access to the fully
turbulent flow. This makes it possible to directly compare theoretical/numerical
predictions with measurements, anywhere in the flow domain. To accomplish
this, all surfaces bounding the flow (cylinders, axial end caps) were constructed
out of transparent Poly(methyl methacrylate) (PMMA), precision built in house
and hand polished to optical quality. The TCF cell is suspended from shafts,
allowing both cylinders to rotate independently (shown in Fig. 1) and providing
cameras an unobstructed view of the entire TCF cell from below. The cylinders are
rotated under computer control using two high-performance stepper motors (Ori-
ental Motors model PKP544N18A with 125,000 steps per revolution), coupled to
the cylinders via timing belts. The inner (outer) cylinder radius was chosen to be
50 (70.42) mm; the aspect ratio is set to Γ = 1, such that the height of the cell is
equal to the difference in the radii, d = 20.42 mm. To remove optical distortion
caused by the curved walls, the cell is submerged in a transparent liquid bath. The
custom-built, transparent PMMA liquid bath was constructed to encase the inner
and outer cylinders, to help stabilize fluctuations in temperature; the temperature
is constant to within 10 mK.

Together with careful consideration of the working fluid’s temperature-
dependent viscosity, this system provided Re control to better than 1%. Both the
working fluid and the liquid bath are index matched to the PMMA walls using
an aqueous solution of NH4 SCN, which has a kinematic viscosity close to that of
pure water. For the working fluids used in the study, the system dimensions were
carefully chosen to minimize the image acquisition sample rate needed to resolve
the flow spatially and temporally. This enabled quantitative measurements of the
flow using inexpensive machine vision cameras (iDS Model UI-3140CP-M-GL).

Data, Materials, and Software Availability. Data that support the key find-
ings of this study (relating to the exact coherent structures and their key prop-
erties) have been deposited in Github (https://github.com/cdggt/tcf/tree/main/
eta0.71) (49). Some study data are available. Due to their size, experimental
datasets and the numerical turbulent trajectory will be available upon request
only.

ACKNOWLEDGMENTS. We thank Marc Avila for sharing his Taylor–Couette flow
code. We also gratefully acknowledge financial support by Army Research Office
under Grants W911NF-15-1-0471 and W911NF-16-10281 and by NSF under
Grant CMMI-1725587.

1. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers. Cr. Acad. Sci. URSS 30, 301–305 (1941).

2. G. I. Taylor, Statistical theory of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 151, 421–444
(1935).

3. J. Schumacher et al., Small-scale universality in fluid turbulence. Proc. Natl. Acad. Sci. U.S.A. 111,
10961–10965 (2014).

4. L. F. Moody, Friction factors for pipe flow. Trans. Asme 66, 671–684 (1944).
5. A. J. Smits, B. J. McKeon, I. Marusic, High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech.

43, 353–375 (2011).
6. A. F. Hussain, Coherent structures—Reality and myth. Phys. Fluids 26, 2816–2850 (1983).
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differentialsystems. Ber. Math.-Phys. Kl Sächs. Akad. Wiss. Leipzig 94, 1–22 (1942).
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